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1. INTRODUCTION

Click-through Prediction

• Goal : Predicting CTR at Twitter

• Learning-to-rank and Online Learning

• Properties of Tweet streams.
. The stream of Tweets are correspond to her long term interest

but do not reflect her current status.
. Every user has a different timeline which is updated dynamically.
. Sparse and Unique property .
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2. ADVERTISING IN TWITTER TIMELINE

System overview

Figure: The process of displaying an ad in Twitter timeline.

• Users could perform a negative engagement with a promoted Tweet
by hitting a “dismiss” button.



2. ADVERTISING IN TWITTER TIMELINE

System overview

• An initial set of ad candidates are formed according to the
information of the user.

• Auction based on bid price and CTR

• Result : 0 ∼ K winning ads

• Correct estimation of click probability and good ranking.
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3. METHODS

Pointwise approach : Baseline

• y ∈ {±1} : ground-truth binary label

• x : Feature vector from the ad, user, timeline, current session . . .

• Minimizing prediction error

• D = {(y , x)} : the set of all instances

• Loss for Pointwise learning

L(w,D) =
∑

(y ,x)∈D

l(y , f (w, x))

• Loss function for a single instance

l(y , f (w, x)) = log(1 + exp(−yf (w, x))) , f (w, x) = wTx

• Logistic regression with SGD



3. METHODS

Pairwise approach

• Minimizing ranking loss

• Advantage of user’s relative ads preference is that we can address the
training data sparsity challenge.

• P = {(yA, xA), (yB , xB) | yA 6= yB} : the set of all pairs in the same
session.

• Loss for Pairwise learning

L(w,P) =
∑

(yA,xA),(yB ,xB)∈P

l(g(yA − yb), f (w, xA)− f (w, xB))

• Calibration :
- Preference score → [sigmoid function] → click probability



3. METHODS

Combined learning

• Online algorithm based on a combined optimization framework

min
w

(αL(w,D) + (1− α)L(w,P))

• We can change α by varying the weight wp of instances formed by a
pair of ads.



3. METHODS

Pseudo pairs

• If we fail to obtain enough pairs, model would be biased towards
minimizing classification loss.

• We artificially create more pairwise training instances.
- Across-user grouping (CF), Within-user grouping

• Set of all pseudo-pairs

S = {((yA, xA, tA), (yB , xB , tB) | yA 6= yB , tA 6= tB}

• Loss

L(w,S) =
∑

((yA,xA,tA),(yB ,xB ,tB)∈S

max(min(log
N

|tA − tB |
, 1), 0)

· l(g(yA − yB), f (w, xA)− (w, xB))

• Optimization

min
w

(α1L(w,D) + (1− α2)L(w,P) + (1− α1 − α2)L(w,S)
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4. ONLINE LEARNING INFRASTRUCTURE

Pointwise learning

• Only ads with impression callbacks will be considered as training
examples.

• All impressions are always set as negative.

• If ever engagement callback returns, this impression is reset as
positive.

Figure: Online pointwise learning process.



4. ONLINE LEARNING INFRASTRUCTURE

Combined learning
• The positive instance is paired with all negative instances belonging

to one session.
• Algorithm : Updated model parameter w.
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5. OFFLINE EXPERIMENT

Metrics

• NRIG (Normalized relative information gain) : To quantify the
accuracy of predicted click prob.

• AUC (Area under receiver operator curve) : To measure ranking
quality

Procedure

• Tweets from random week of year 2014.

• Features : Ad., User, Ad-user interaction, Context of the stream

• Progressive validation

• All parameters are tuned using the first day’s data.



5. OFFLINE EXPERIMENT

Experiment Result

• Overall performance (baseline : Pointwise)

Figure: Performance relative to pointwise learning method



5. OFFLINE EXPERIMENT

Experiment Result

• Learning behavior

(a) Relative NRIG (b) Relative AUC

Figure: Learning behavior of one week excluding the first day
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6. ONLINE EXPERIMENT

Metrics

• CTR (click-through rate)

• RPMq (revenue per thousand requests)

Procedure

• Evaluating pointwise learning and combined learning.

• Online A/B tests

• Weaker baseline random-pointwise : baseline



6. ONLINE EXPERIMENT

Experiment Result

• Overall performance

Figure: performance relative to random pointwise



6. ONLINE EXPERIMENT

Experiment Result

• Learning behavior

(a) Relative CTR (b) Relative RPMq

Figure: Learning behavior

• Combined model is showing fewer ads to users, but these ads lead to
higher click-throughs.

• User experience is improved when using combined learning.
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