Click-through Prediction for Advertising in Twitter Timeline

(Li, et al. 2015)

Presented by Jiin Seo June 28, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. INTRODUCTION
- 2. ADVERTISING IN TWITTER TIMELINE
- 3. METHODS
- 4. ONLINE LEARNING INFRASTRUCTURE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

- 5. OFFLINE EXPERIMENT
- 6. ONLINE EXPERIMENT

Outline

1. INTRODUCTION

- 2. ADVERTISING IN TWITTER TIMELINE
- 3. METHODS
- 4. ONLINE LEARNING INFRASTRUCTURE

= na<</p>

・ロン ・聞 と ・ ヨン ・ ヨン …

- 5. OFFLINE EXPERIMENT
- 6. ONLINE EXPERIMENT

1. INTRODUCTION

Click-through Prediction

- Goal : Predicting CTR at Twitter
- Learning-to-rank and Online Learning
- Properties of Tweet streams.

 \triangleright The stream of Tweets are correspond to her long term interest but do not reflect her current status.

> Every user has a different timeline which is updated dynamically.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

▷ Sparse and Unique property .

1. INTRODUCTION

2. ADVERTISING IN TWITTER TIMELINE

3. METHODS

4. ONLINE LEARNING INFRASTRUCTURE

・ロト ・四ト ・ヨト ・ヨト

= na<</p>

- 5. OFFLINE EXPERIMENT
- 6. ONLINE EXPERIMENT

2. ADVERTISING IN TWITTER TIMELINE

System overview

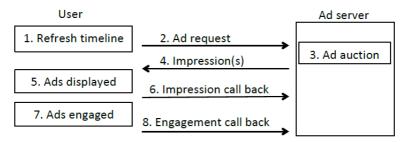


Figure: The process of displaying an ad in Twitter timeline.

 Users could perform a negative engagement with a promoted Tweet by hitting a "dismiss" button.

2. ADVERTISING IN TWITTER TIMELINE

System overview

- An initial set of ad candidates are formed according to the information of the user.
- Auction based on bid price and CTR
- Result : 0 ~ K winning ads
- Correct estimation of click probability and good ranking.

1. INTRODUCTION

2. ADVERTISING IN TWITTER TIMELINE

3. METHODS

4. ONLINE LEARNING INFRASTRUCTURE

5. OFFLINE EXPERIMENT

6. ONLINE EXPERIMENT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ▲○

Pointwise approach : Baseline

- $y \in \{\pm 1\}$: ground-truth binary label
- x : Feature vector from the ad, user, timeline, current session
- Minimizing prediction error
- **D** = {(y, x)} : the set of all instances
- Loss for Pointwise learning

$$L(\mathbf{w}, \mathbf{D}) = \sum_{(y, \mathbf{x}) \in \mathbf{D}} l(y, f(\mathbf{w}, \mathbf{x}))$$

Loss function for a single instance

$$I(y, f(\mathbf{w}, \mathbf{x})) = log(1 + exp(-yf(\mathbf{w}, \mathbf{x}))) , f(\mathbf{w}, \mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

• Logistic regression with SGD

Pairwise approach

- Minimizing ranking loss
- Advantage of user's relative ads preference is that we can address the training data sparsity challenge.
- P = {(y_A, x_A), (y_B, x_B) | y_A ≠ y_B} : the set of all pairs in the same session.
- Loss for Pairwise learning

$$L(\mathbf{w}, \mathbf{P}) = \sum_{(y_A, \mathbf{x}_A), (y_B, \mathbf{x}_B) \in \mathbf{P}} I(g(y_A - y_b), f(\mathbf{w}, \mathbf{x}_A) - f(\mathbf{w}, \mathbf{x}_B))$$

- Calibration :
 - Preference score \rightarrow [sigmoid function] \rightarrow click probability

Combined learning

• Online algorithm based on a combined optimization framework

$$\min_{\mathbf{w}}(\alpha L(\mathbf{w},\mathbf{D}) + (1-\alpha)L(\mathbf{w},\mathbf{P}))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 We can change α by varying the weight w_p of instances formed by a pair of ads.

Pseudo pairs

- If we fail to obtain enough pairs, model would be biased towards minimizing classification loss.
- We artificially create more pairwise training instances.
 - Across-user grouping (CF), Within-user grouping
- Set of all pseudo-pairs

$$\mathbf{S} = \{((y_A, \mathbf{x}_A, t_A), (y_B, \mathbf{x}_B, t_B) \mid y_A \neq y_B, t_A \neq t_B\}$$

Loss

$$L(\mathbf{w}, \mathbf{S}) = \sum_{\substack{((y_A, \mathbf{x}_A, t_A), (y_B, \mathbf{x}_B, t_B) \in \mathbf{S} \\ \cdot \quad l(g(y_A - y_B), f(\mathbf{w}, \mathbf{x}_A) - (\mathbf{w}, \mathbf{x}_B))}} \max(\min(\log \frac{\mathbf{N}}{|t_A - t_B|}, 1), 0)$$

Optimization

$$\min_{\mathbf{w}}(\alpha_1 L(\mathbf{w}, \mathbf{D}) + (1 - \alpha_2)L(\mathbf{w}, \mathbf{P}) + (1 - \alpha_1 - \alpha_2)L(\mathbf{w}, \mathbf{S})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. INTRODUCTION

2. ADVERTISING IN TWITTER TIMELINE

3. METHODS

4. ONLINE LEARNING INFRASTRUCTURE

5. OFFLINE EXPERIMENT

6. ONLINE EXPERIMENT

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ つくぐ

4. ONLINE LEARNING INFRASTRUCTURE

Pointwise learning

- Only ads with impression callbacks will be considered as training examples.
- All impressions are always set as negative.
- If ever engagement callback returns, this impression is reset as positive.

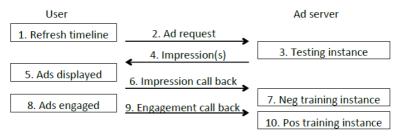


Figure: Online pointwise learning process.

4. ONLINE LEARNING INFRASTRUCTURE

Combined learning

- The positive instance is paired with all negative instances belonging to one session.
- Algorithm : Updated model parameter w.
 - 1: $imp_map \leftarrow cache.get(req_id)$
 - 2: $(y, \mathbf{x}) \leftarrow imp_map.get(imp_id) // get impression$
 - 3: if type = impression_call_back then
 - 4: imp_map.set(imp_id, (-1, x)) // set label to negative
 - 5: update w using (-1, x) by SGD // pointwise learning
 - 6: else // handle engagement call back
 - 7: imp_map.set(imp_id, (+1, x)) // set label to positive
 - 8: update w using (+1, x) by SGD // pointwise learning
 - 9: $P \leftarrow extract_pairs(imp_map, (+1, \mathbf{x}))$
 - if P.length > 0 then // pairwise learning
 - 11: for Each pair $((y_A, \mathbf{x}_A), (y_B, \mathbf{x}_B))$ in P do
 - 12: $\mathbf{x} \leftarrow (\mathbf{x}_A \mathbf{x}_B)$
 - 13: $y \leftarrow g(y_A y_B)$
 - update w using (y, x) and weight w_p by SGD
 - 15: end for
 - 16: end if

Outline

1. INTRODUCTION

2. ADVERTISING IN TWITTER TIMELINE

3. METHODS

4. ONLINE LEARNING INFRASTRUCTURE

5. OFFLINE EXPERIMENT

6. ONLINE EXPERIMENT

5. OFFLINE EXPERIMENT

Metrics

- NRIG (Normalized relative information gain) : To quantify the accuracy of predicted click prob.
- AUC (Area under receiver operator curve) : To measure ranking quality

Procedure

- Tweets from random week of year 2014.
- Features : Ad., User, Ad-user interaction, Context of the stream

- Progressive validation
- All parameters are tuned using the first day's data.

5. OFFLINE EXPERIMENT

Experiment Result

• Overall performance (baseline : Pointwise)

Method	Pairwise	Combined	Pseudo
Relative NRIG (%)	-75.90	+9.44	+10.25
Relative AUC (%)	$+1.76^{***}$	$+1.91^{***}$	$+2.11^{***}$

Figure: Performance relative to pointwise learning method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

5. OFFLINE EXPERIMENT

Experiment Result

Learning behavior

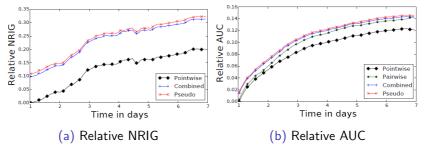


Figure: Learning behavior of one week excluding the first day

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Outline

1. INTRODUCTION

2. ADVERTISING IN TWITTER TIMELINE

3. METHODS

4. ONLINE LEARNING INFRASTRUCTURE

= na<</p>

・ロン ・聞 と ・ ヨン ・ ヨン …

- 5. OFFLINE EXPERIMENT
- 6. ONLINE EXPERIMENT

6. ONLINE EXPERIMENT

Metrics

- CTR (click-through rate)
- RPMq (revenue per thousand requests)

Procedure

• Evaluating pointwise learning and combined learning.

- Online A/B tests
- Weaker baseline random-pointwise : baseline

6. ONLINE EXPERIMENT

Experiment Result

• Overall performance

Method	Pointwise	Combined
Relative CTR (%)	+14.59	+26.10(+10.05)
Relative RPMq (%)	+57.20	+57.89(+0.44)

Figure: performance relative to random pointwise

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

6. ONLINE EXPERIMENT

Experiment Result

Learning behavior

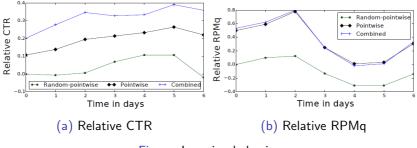


Figure: Learning behavior

• Combined model is showing fewer ads to users, but these ads lead to higher click-throughs.

ヘロン 人間 とくほと くほとう

э.

• User experience is improved when using combined learning.